Showing posts with label 【PYTHON】algorithm evaluation k fold cross validation. Show all posts
Showing posts with label 【PYTHON】algorithm evaluation k fold cross validation. Show all posts

Friday, May 14, 2021

【PYTHON】algorithm evaluation k fold cross validation

 from pandas import read_csv

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.csv'
names = ['preg''plas''pres''skin''test''mass''pedi''age''class']
dataframe = read_csv(filename, names=names)

array = dataframe.values

#splitting the array to input and output
X = array[:,0:8]
Y = array[:,8]

num_folds = 10
seed = 7

kfold = KFold(n_splits = num_folds, random_state = seed)
model = LogisticRegression(solver='liblinear')

results = cross_val_score(model, X, Y, cv=kfold)
print("Accuracy: %.3f%% (%.3f%%) " % (results.mean()*100.0, results.std()*100.0))