Wednesday, May 19, 2021

【PYTHON】metric confusion

 from pandas import read_csv

from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.csv'
#url = 'https://myfilecsv.com/test.csv'
names = ['preg''plas''pres''skin''test''mass''pedi''age''class']
dataframe = read_csv(filename, names=names)

array = dataframe.values

#splitting the array to input and output
X = array[:,0:8]
Y = array[:,8]
test_size = 0.33



seed = 7
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size,random_state=seed)
model = LogisticRegression(solver='liblinear')

model.fit(X_train, Y_train)
predicted = model.predict(X_test)

matrix = confusion_matrix(Y_test, predicted)
print(matrix)


No comments:

Post a Comment