Friday, May 21, 2021

【PYTHON】metric regression mae

 from pandas import read_csv

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LinearRegression
filename = 'BostonHousing.csv'
names = ['CRIM''ZN''INDUS''CHAS''NOX''RM''AGE''DIS''RAD''TAX''PTRATIO','B''LSTAT''MEDV']
dataframe = read_csv(filename, names=names)
array = dataframe.values
X = array[:,0:13]
Y = array[:,13]
kfold = KFold(n_splits=10, random_state=7)
model = LinearRegression()
scoring = 'neg_mean_absolute_error'
results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)
print("MAE: %.3f (%.3f)" % (results.mean(), results.std()))

No comments:

Post a Comment